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Abstract

We propose our solution to the multimodal
semantic role labeling task from the CON-
STRAINT’22 workshop. The task aims at clas-
sifying entities in memes into classes such as
“hero” and “villain”. We use several pre-trained
multi-modal models to jointly encode the text
and image of the memes, and implement three
systems to classify the role of the entities. We
propose dynamic sampling strategies to tackle
the issue of class imbalance. Finally, we per-
form qualitative analysis on the representations
of the entities.

1 Introduction

Social media memes can be defined as “pieces
of culture, typically jokes, which gain influence
through online transmission” (Davison, 2012).
More specifically, memes are visual templates usu-
ally associated with a textual caption. Analysing
memes involves many unique challenges that dif-
fer from classical multimodal tasks such as image
captioning and visual question answering. While
unimodal models can often perform well on multi-
modal datasets (Agrawal et al., 2018), memes in-
volve a lot of entanglement – stylistic or semantic
– between the two modalities, such as the caption
contradicting the image. This makes memes in-
trinsically multimodal. Furthermore, pragmatics
– the context’s contribution to meaning – plays a
key role in the interpretation of memes. In particu-
lar, phenomenons such as irony are challenging to
detect. Even human annotators have difficulties in
interpreting a meme correctly without knowledge
of the community in which the meme was shared.

In this paper, we tackle the shared task on
multimodal semantic role labeling of the CON-
STRAINT’22 workshop (Sharma et al., 2022).
Given a (meme, entity) pair,1 the goal is to clas-
sify the entity’s role in the meme into one of four

*These authors contributed equally.
1We take each (meme, entity) pair as independent sam-

classes (hero, villain, victim or other)
from the perspective of the author of the meme.
The multimodality of the problem stems from the
meme, which is given as an (image,OCR) pair,
where OCR (for Optical Character Recognition) is
the caption extracted from the image. The dataset
covers one language, English, and two domains,
COVID-19 and US politics. Figure 1 shows a sam-
ple from the training set.

Understanding memes involves a lot of common-
sense and cultural knowledge on the political stance
of the entities. Thus, it requires models pre-trained
on a large amount of data, capable of recognising
key entities such as political figures in both modal-
ities, and of inferring their relationship, their role
and the public opinion of a community on them.
To evaluate the task’s difficulty, we manually an-
notate a set of samples. With 5 annotators, we
reach an average Macro-F1 of 0.65 (see details in
Appendix A), less than 10 points above the best
system submitted to the shared task.

We propose systems relying on several multi-
modal (vision–language) pre-trained models: One
For All (OFA, Wang et al., 2022), CLIP (Radford
et al., 2021) and VisualBERT (Li et al., 2019). We
use these models as encoders to extract multimodal
meme representations. These encoders are intro-
duced in Section 3. We then design several neural
network classifiers to handle these representations
in a task-specific fashion. These classifiers are pre-
sented in Section 4.1.

The CONSTRAINT’22 dataset is characterised
by a large class imbalance, with the most frequent
class gathering 78% of the samples in the train set,
while the least frequent one is conveyed by less
than 3% of the samples. However, the challenge
is evaluated using a Macro-F1 metric and calls
for balanced performances across all classes. To
handle this discrepancy, we developed several sub-

ples, thus considering all entities of a meme independently
during training and inference.
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Figure 1: In this meme, the OCR is: “WEARS A
MASK THE SAME WAY\nEXIT\nHE HANDLES
THE\nPANDEMIC \nmakeameme.org\n”. There are
two entities, “Donald trump” labeled as villain and
“mask” labeled as other.

sampling strategies that we present in Section 4.2.
Our best results are obtained by ensembling pre-

dictions from all of our models, using various en-
sembling methods. The details of the ensembling
methods are given in Section 4.3. Finally, we
present our performance in Section 5 along with
a qualitative analysis of our models. We highlight
the limitations of the dataset, task and methods in
Section 6.

To summarise, our whole architecture is built
on freely available pre-trained models. We only
fine-tune these models for the multimodal seman-
tic role labeling task. This makes computational
training cost particularly low. Our system can be
characterised by:

• Simple classifier design on top of deep pre-
trained model.

• Handling of class imbalance through
carefully-designed sampling strategies.

Our code is available at: https://github.
com/smontariol/mmsrl_constraint.

2 Related Work

Multimodal semantic role detection in memes is a
relatively unique task, compared to other language–
image multimodal task such as object classification
and entity action detection, it requires a lot more
contextual and cultural background. In this section,
we list some related problems before introducing
tools to tackle the task at hand in the next section.

In recent years, social media platforms have seen
a wave of multimodal data in diverse media types.
This attracted the interest of researchers to com-
bine modalities to solve various tasks with joint
representations, where the model’s encoder takes
all the modalities as input, or separated representa-
tions, where all modalities are encoded separately

(Baltrušaitis et al., 2018).
In the CONSTRAINT’22 challenge, we tackle

multimodal semantic role labeling (SRL). SRL is
originally a Natural Language Processing (NLP)
task which consists in labeling words in a sentence
with different semantics roles to determine Who
did What to Whom, When and Where (Gildea and
Jurafsky, 2002; Carreras and Màrquez, 2005); these
roles are also known as thematic relations. It was
extended to the computer vision domain through
Visual SRL. Visual SRL benchmarks focus on sit-
uation recognition in images (Silberer and Pinkal,
2018; Pratt et al., 2020); these tasks heavily rely
on object detection systems for visual groundings
(Yang et al., 2019). This differs from the methods
we need to implement for the shared task, where
the entities do not necessarily appear in the image.
Moreover, in our case, the semantic role is taken
from the point of view of a political argumenta-
tive: the perception of the entity by the author of
the meme. This involves completely different fea-
tures compared to labeling the thematic relations
of the entity; in particular, cultural and contextual
knowledge on the background of the meme.

Another similar task is multimodal named entity
recognition, which aims at identifying and classify-
ing named entities in texts and images. It requires
more in-domain knowledge compared to multi-
modal SRL; but most multimodal NER datasets
are text-centric, with the image being an additional
feature for the text-based prediction (Arshad et al.,
2019; Chen et al., 2021), while our task is more
symmetrical or even image-centric.

Finally, many shared task on memes have been
proposed in recent years, with a large variety of
tasks: emotion classification (e.g. MEMOTION task
at SemEval 2020 Sharma et al., 2020); hateful
meme detection (e.g. the Hateful Meme Chal-
lenge Kiela et al., 2020) event clustering (e.g.
DANKMEMES at EVALITA 2020 (Miliani et al.,
2020)); more fine-grained hateful content analysis
(Fine-Grained Hateful Memes Detection Mathias
et al., 2021, aiming at classifying the target attacked
by the meme and the type of attack); or and detec-
tion of persuasion techniques (e.g. Semeval 2021
Task 6, Dimitrov et al., 2021).

3 Multimodal Encoding

Since we experiment with deep neural networks,
we need to obtain distributed representations of
our inputs. To this end, we use pre-trained mod-
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els with good performances on popular datasets.
These models are multimodal transformers, that
we use to encode image and caption’s OCR into
a common latent space. While transformers were
originally developed for natural language process-
ing (Vaswani et al., 2017; Devlin et al., 2019), they
subsequently became ubiquitous in computer vi-
sion models as well (Dosovitskiy et al., 2021). To
process an image, it is first cut into a sequence of
P × P × C patches. These patches are then pro-
jected into the transformer input dimension, either
using a single linear layer, or using a full-fledged
CNN architecture.

The output of a transformer has the same length
as its input. We call this length N ; it is the number
of patches in the image, the number of tokens in the
OCR, or the sum of the two for multimodal trans-
formers. Thereafter, we refer to an encoded meme
image i and OCR o as encfull(o, i) ∈ RN×d. This
output can be further pooled into a fixed-size rep-
resentation encpool(o, i) ∈ Rd. We now describe
what models are behind these encoder functions.

3.1 CLIP and VisualBERT

The multi-modal features are extracted from the
caption’s OCR and the meme image using two
vision-language models, CLIP and VisualBERT.

CLIP (Contrastive Language–Image Pre-
training, Radford et al., 2021) is trained using text
as supervision to encode images, with 400 million
image–text pairs available on the internet. The
training task is to predict which text is associated
with an image, from all text snippets of the batch,
using a contrastive objective instead of a predictive
one for computational efficiency. CLIP trains
an image encoder and a text encoder jointly,
maximizing the cosine similarity of the image
and text embeddings in the joint representation
space for positive pairs, and minimizing similarity
of negative pairs. The strength of this task is to
offer large robustness and zero-shot capability to
the model, to transfer to many classification tasks.
Image encoding is done using a variation of the
Vision Transformer (ViT, Dosovitskiy et al., 2021).
Text encoding is done using a GPT-like language
model (Radford et al., 2019).2

Similar to CLIP, we use a VisualBERT model
(Li et al., 2019) trained on visual commonsense

2The sequence length is limited to 76 byte-pairs. In the
CONSTRAINT task corpus, 76 byte-pairs corresponds to the
95th quantile of OCR text length in the test set, and slightly
more in the train set.

reasoning and image captioning. VisualBERT uses
self-attention to align parts of the text with regions
of the image and build a joint representation. It
mostly differs from CLIP in its training procedure
in three phases: task-agnostic pre-training, task-
specific pre-training, and task-specific fine-tuning.
Moreover, VisualBERT does not include an im-
age encoder; the patch features are extracted be-
forehand with pre-trained image classification and
segmentation models. We extract features using
FasterRCNN (Ren et al., 2015), EfficientNet (Tan
and Le, 2019) and VGG (Simonyan and Zisserman,
2015). Bucur et al. (2022) showed that EfficientNet
features prove useful for sentiment and emotion
analyses of meme, while Pramanick et al. (2021)
prove the efficiency of VGG for detecting harmful
memes and identifying their target.

The output of both CLIP and VisualBERT can
either be pooled (encpool) or be used as-is (encfull).

3.2 OFA

A second method we experiment with to obtain
a distributed representation of text and images
is OFA (One For All, Wang et al., 2022). OFA
is based on an encoder–decoder architecture pre-
trained on several visual, textual and cross-modal
tasks. A key point of OFA is to leverage a diverse
set of training tasks to obtain good zero-shot per-
formances. Despite this claim, we did not obtain
satisfactory zero-shot results. We hypothesize that
this is due to the noisy OCR and to the nature
of meme role labeling which is radically different
from what OFA was pre-trained on.

All tasks are expressed as sequence-to-sequence
problems, such that a single OFA model can be
used without the need of task-specific layers. For
example, one of the pretraining task is image cap-
tioning; for this task, the model is trained to predict
the caption given the image and the text “What
does the image describe?” as inputs.

The input image and text are fed jointly to the
encoding transformer using modality-specific po-
sitional embeddings. The image representation is
built from 16× 16 patches embedded by a ResNet
(He et al., 2016). The decoding transformer is
trained as a causal language model conditioned on
the encoder’s output with a standard cross-entropy
loss. When the output is constrained on a small
number of classes, the model is trained and evalu-
ated on the task’s output domain, not on the whole
output vocabulary.
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For the meme role labeling task, we feed OFA
with the image as well as the following instruction:

“What is the category of ENTITY between hero,
villain and victim? OCR”

As we detail in the next Section 4, we train OFA
either as a sequence to sequence problem (resulting
in a pair of models encOFA–decOFA) or by adding
a classification head on top of the decoder (which
can be used as a standard encpool).3

4 Models

We now describe how we use the encoded text and
images for semantic role labeling.

4.1 Classification

We experiment with three different methods to clas-
sify a (meme, entity) pair, depending on what kind
of representation we get from the encoder. The rep-
resentation of the meme is composed of the image’s
representation along with the encoded caption’s
OCR, and any extra features such as the list of enti-
ties related to the meme. For ease of notation, we
group under “OCR” all extra features which were
extracted from the meme, and we refer to them
using a single variable o = (OCR, caption, . . . ).
Image features are referred to by i and the encoded
list of entities by e. All classifiers are illustrated in
Figure 2.

Multilayer perceptron (MLP) When the output
of the encoder is of fixed size, we use a 2-layers
MLP classifier. The input of the classifier is made
from the encoding of the OCR, image and entity.
The representation of the entity is obtained using
the same transformer used to process the OCR.
The output of the model is a softmax on the four
possible roles:

P (r | o, i, e) ∝ expMLP

([
encpool(o, i)
encpool(e)

])

r

.

This model is trained using a standard cross-
entropy loss. Depending on the encoder, we either
train the MLP alone, or the MLP and the encoder
jointly.

Attention When the representations of the OCR
and image are not pooled along the sequence’s
length, we use an attention mechanism. In this

3For the OFA model, encpool refers to the output of the
penultimate layer of OFA’s decoder, while we use encOFA to
reference only the OFA’s encoder.

case, the query of the attention is the entity we
wish to classify, while the memory is built from a
concatenation of the image and OCR encoded by
CLIP or VisualBERT:

αj ∝ exp
(
encpool(e)

TWk encfull(o, i)j

)
,

a = ReLU


∑

j

αjWv encfull(o, i)j


 ,

where Wk and Wv are parameters used to project
the encoded meme for use as attention key and
value. We classify the attention output a, using a
softmax layer P (r | o, i, e) ∝ exp(Wpa)r.

Since the encoders already use positional em-
beddings, we do not add this information to our
classifier’s attention. However, we do use segment
embeddings to distinguish the vectors encoding the
image, OCR or entity list in the encoder’s output.
We use different MLP layers depending on whether
a vector correspond to an input image, OCR or en-
tity list. This model is also trained by minimizing
the cross-entropy with gold labels.

Seq2seq When using an OFA encoder, we also
attempt to stay in the sequence to sequence frame-
work and train the model to generate the class la-
bels. In this case, if we denote the label’s tokens by
ℓ, the model is trained to maximize the likelihood
that the meme (o, i) has the gold target ℓ:

P (ℓk | ℓ<k, o, i) ∝ decofa(encofa(o, i), ℓ<k)ℓk ,

where ℓ<k = [ℓ1, ℓ2, . . . , ℓk−1]
T refers to the list

of previous tokens. To evaluate this model, the log-
likelihood of the possible labels are summed along
sequence length:

r̂ = arg max
r

P (r | o, i) ∝
∏

k

P (ℓ
(r)
k | ℓ(r)<k, o, i),

where ℓ(r) designates the list of tokens for the label
r, such as [vil,lain]T.

Additional features As explained in Section 2,
our task is quite different from most multimodal
tasks on which the encoders were trained; it is
much more abstract and requires a lot of additional
background knowledge. Thus, when using CLIP
and VisualBERT, we add supplementary features
as input to the classification model (MLP and at-
tention).

We add as textual features the list of entities
associated with the meme, this list is directly avail-
able in the dataset. We encode the entities’ names
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Figure 2: Our three classifiers. Note that each classifier uses a different combination of encoders. MLP is used with
encpool, Attention requires encfull, while Seq2seq requires an encOFA–decOFA pair.

using the same encoder as the system (CLIP or Vi-
sualBERT).4 We also add to the system the image
features that were extracted using VGG, Efficient-
NET and FRCNN.

4.2 Dealing with Class Imbalance

The dataset faces a large class imbalance, with the
class other being over-represented (78% in the
train set) and classes hero and victim consist-
ing of only 2.7% and 5.2% of the train set respec-
tively. Thus, training on the raw dataset might
lead to overfitting and over-predicting the majority
class. Moreover, recall that the evaluation metric is
Macro-F1, which weighs each class equally; hence
the importance of solving the class imbalance is-
sue.

Our first solution was to weight labels in the loss.
This loss penalisation led to poor performances;
we suspect this is due to the working of the opti-
mization algorithm we used. Adam and its vari-
ants estimate the distribution of the gradients using
exponential moving averages; these estimates are
faulty when the magnitude of the loss changes of-
ten.

A common strategy is over-sampling the low-
frequency classes and under-sampling the high-
frequency ones. Each (meme, entity) pair is
dropped with a pre-defined probability, following
various class sampling strategies. We evaluated 6
different sampling strategies illustrated in Figure 3:

4We also experiment with adding generated captions as
features. We generate them using an OFA model trained for
automatic caption generation. However, the captions are very
generic and descriptive; for example the entities names are
not captured by the model. This features does not improve
the systems, hence we do not further develop it in the results
section.

Micro does not subsample. This optimize the
Micro-F1, which puts more weight on sam-
ples labeled other due to their sheer number.

Macro subsamples memes such that the label dis-
tribution is uniform. This implies dropping a
large amount of other samples in order to
lower their frequency.

In-between is a compromise between micro and
macro, balancing between matching the eval-
uation loss and seeing a more diverse set of
samples.

Interpolate drifts from micro to macro during
training. For the first epoch, the memes are
sampled according to the empirical distribu-
tion (micro); while the last epoch is sampled
to have a uniform label distribution (macro).

Cycle alternates between micro and macro (2-
epoch short cycle) or between micro, macro
and two different in-between (4-epoch long
cycle).

For the last two strategies, the sampling rates are
updated at the end of each epoch during training.
In general, these dynamic sampling strategies per-
formed better than sampling strategies with a fixed
rate for the whole training duration.

4.3 Ensembling

In order to further improve our results, we build
several ensemble of our models. We filter-out mod-
els with a low validation macro-F1 and experiment
with several ensembling techniques. Due to the
small size of the dataset, we did not create an addi-
tional split to evaluate our ensembling approach. In
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Figure 3: Target frequencies of the various strategies
during training. The micro strategy corresponds to using
the empirical class distribution in the dataset, that is hero
2.7%, villain 13.9%, victim 5.2% and other 78.2%.

this context, overfitting the validation set is a risk.
Two of the ensembling methods we evaluate are
therefore non-parametric. These non-parametric
strategies take the average or the median probabil-
ity assigned to each class by all models.

Preliminary results indicate that training a lin-
ear model to weight the output of our various
models is tedious and does not improve over non-
parametric strategies. We therefore turn towards
gradient boosted trees (Friedman, 2001) trained by
XGBoost (Chen and Guestrin, 2016). XGBoost
builds an ensemble of decision trees, whose inter-
nal nodes correspond to conditions on our models’
output, and whose leaves correspond to a predicted
semantic role. Boosted trees have the potential
to outperform non-parametric methods by better
capturing the scale of various models’ output, how-
ever it has the downside of being very prone to
overfitting.

5 Results

5.1 Experimental process

The train set consists of 17 514 (meme, entity) pairs,
the validation set 2 069 pairs and the test set 2 433
pairs. We did all the training on the datasets from
the two domains, COVID-19 and US politics jointly.
The test set contains examples from both domains.
The evaluation is done with Macro-F1 score; the
OCR and the list of entities are provided along with
the image of the meme. We run all experiments
5 times to check for the robustness of results and
perform statistical testing.

For CLIP, we use the biggest L/14 CLIP-ViT
model built on the Vision Transformers (Dosovit-
skiy et al., 2021). Both preliminary self-supervised
fine-tuning and fine-tuning while doing the classifi-
cation failed. This is probably due to the size and

the format of the shared task dataset, much smaller
and quite different from the training data of the pre-
trained model; any fine-tuning leads the model to
forget the knowledge it learned during pre-training.
Consequently, we freeze all layers and tune only
the classifier, with the architectures described in
Section 4.

For VisualBERT, we fine-tune the
visualbert-vcr-coco-pre model trained
on caption generation and visual commonsense
reasoning.

For OFA encpool with an MLP classifier, we ob-
tained better results by fine-tuning the whole model
from the vqa_large_best checkpoint5 using a
small 0.1 label smoothing and feeding the OCR and
entity both to the encoder – along with the image
– and to the decoder. Our OFA seq2seq model fol-
lows the same setup using the ofa_base check-
point.

In the dataset, several entities are associated with
more that one label. As this situation is infrequent,
we consider the small amount of samples with mul-
tiple labels does not warrant a full-fledged multi-
label classification setup. Thus, our models output
a single categorical distribution. When multiple
labels ought to be predicted for an entity (the entity
appears twice in the list of entities associated with
the meme), we predict them in order of likelihood.

5.2 Quantitative results

Classifier results. Table 1 compares our main
models on the CONSTRAINT’22 test set. We mea-
sure the statistical significance of our results using a
one-sided Welch’s unequal variances t-test (Welch,
1947) under the null hypothesis that the macro-F1

are equals. Some hyperparameters are optimized
on a per-model basis. In particular, using the list of
entities as additional feature improves the perfor-
mance for VisualBERT and CLIP-attention but not
for our best CLIP-MLP model.

A CLIP encpool together with an MLP classi-
fier reached the best performances among our non-
ensembling model pool, significantly (p < 0.0004)
improving over the OFA MLP combination. Using
the unpooled features of the transformers (encfull)
with an attention classifier underperform compared
to the encpool+MLP approach. However this dif-
ference is not significant in the case of Visual-
BERT (p < 0.3). In particular, attention-based

5This refers to an OFA model pre-trained on 8 tasks then
fine-tuned on VQA from the official OFA repository.
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Encoder Classifier
Macro-F1

mean std

OFA MLP 44.6 0.5
OFA Seq2seq 44.0 0.9

CLIP MLP 47.0 0.5
CLIP∗ Attention 42.3 1.7

VisualBERT∗ MLP 43.1 0.2
VisualBERT∗ Attention 42.3 1.8

Ensemble mean 47.9 -
Ensemble median 47.5 -
Ensemble XGBoost 47.6 -

Challenge’s top score 58.7 -
Human 65.5 4.6

Table 1: Comparison of the best systems with the dif-
ferent encoders and classification architectures. All
systems are run 5 times with 25 epochs. Encoders with
a ∗ in exponent are augmented with the list of entities
as feature.

Sampling
Macro-F1

mean std

micro 38.3 1.0
in-between 44.1 0.3
macro 42.3 0.6
interpolate 46.3 0.8
short cycle 47.0 0.5
long cycle 46.5 0.5

Table 2: Sampling results with the CLIP model and
MLP classifier, with 500 batch per epoch.

approaches have more variance than their MLP
counterpart. The OFA seq2seq model reaches per-
formances within the error margin of the OFA MLP
model (p < 0.14), which is not surprising since the
two models are relatively close. The gap between
VisualBERT and OFA is somewhat significant with
p-values between 0.001 and 0.07 depending on the
pairwise comparison. As expected, ensembling
leads to the best result, regardless of the ensem-
bling strategy; human annotators far exceed current
model performances. We further develop human
annotation in Section 6.

Sampling results. Table 2 compares the differ-
ent sampling strategies represented in Figure 3 for
training a CLIP encoder with MLP model. As
expected, using the empirical class distribution

(micro strategy) leads to the worse score. While
the macro strategy is in theory what we should
maximise to improve the Macro-F1, it is second
worst among all strategies. The dynamic strategies,
which use evolving sampling frequencies during
training clearly outperform static strategies. In par-
ticular, for training CLIP, the short cycle strategy
outperforms the other ones, but the difference with
long cycle and interpolate is not statistically signif-
icant (p-values > 0.05). We observe similar tenden-
cies with systems based on OFA and VisualBERT,
with a slight advantage to the interpolate strategy
over the cycling ones for the former.

Despite the different subsampling strategies, the
per-class performances vary widely, see for exam-
ple the results for the CLIP MLP model with a
short cycling subsampling strategy:

% hero villain victim other

F1 20 50 33 84
Precision 15 46 26 90
Recall 33 56 45 79

We observe similar results with all hyperparame-
ter combination. These performances somewhat
follow the empirical distribution of the classes,
with the rarest class hero having the worst per-
formance, and victim being not much better.
This makes us consider sub-sampling other even
below 25%. However, this observation-inspired
“super-macro” strategy did not prove successful,
reaching an average Macro-F1 or 40.0, higher than
the micro strategy but lower than the macro one.

5.3 Qualitative analysis

We extract the embeddings of all entities in the train
set as their are embedded by the CLIP model, right
before being fed into the MLP or being used as
query for the attention mechanism. Keeping only
the ones occurring more than 30 times, we perform
a PCA on their embeddings and represent the first
two components in Figure 4. Each point represents
an entity, its colour depends on the distribution of
labels that are attributed to the entity, normalised
by the global frequency of each label in the full
dataset. We keep only the two most frequent labels
associated with the entity for colouring. We can see
that inanimate objects tend to be labeled as other.
On the other hand, large political parties are nearly
always portrayed as villain with America as a
victim. The somewhat unexpected heroic status
of the libertarian party can be explained by the pres-
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Figure 4: PCA of entity embeddings from CLIP. The
explained variance is 33%+18%. The entities appearing
more than 30 times, with labels attached to the 16 most
frequent ones. The color of the embeddings reflect
the role attached to the entity in the train set ( hero,
villain, victim, other). When the entity is

assigned different roles, the color are mixed together;
e.g. covid19 appears twice as often as other as it
does as villain.

ence of advertisements in the form of memes in the
dataset. We can see that CLIP was able to sepa-
rate the entities according to their probable class
even before processing the meme. Still, the model
can’t clearly distinguish between most heroes and
villains without seeing the meme, which is to be
expected.

6 Discussion

The multimodal aspect is crucial in this task. When
looking at entity names, only 15% have an exact
surface form match in the caption’s OCR; more-
over, the OCR is often incomplete or noisy (see
example in Figure 1 with the “Exit” sign popping
in the middle of the caption). Thus, using only the
text is far from sufficient. On the other hand, recog-
nising the entities in the image of the meme is not
an easy task. As stated in the introduction, the im-
age and the text are often not directly related. More-
over, the image often contains elements not seen in
common image datasets; for example, meme cre-
ators often perform montages like swapping faces
and objects. Overall, a lot of commonsense and
cultural knowledge is needed for the model to un-
derstand what the meme is about.

The absence of contextual information also
makes the task difficult for humans. To evaluate
the difficulty of the task, we performed human an-
notation of a sample of 100 (image, entity) pairs

with five annotators. Details of annotation process
can be found in Appendix A. The average pair-
wise Cohen’s κ (Cohen, 1960), used to measure the
inter-annotator agreement, is 0.47. It indicates a
“moderate” agreement according to Cohen (1960).
However, it also shows that less than one third
of the annotations are reliable (McHugh, 2012).
Moreover, the macro-F1 scores are relatively low:
the average is 0.65 and the maximum 0.69. Hav-
ing metadata such as source website and date of
publication of the meme would help human and
algorithmic annotators alike.

Finally, from a real-world point of view, this task
is not entirely complete: the OCR and the list of
entities are already provided in the dataset, and we
only have to perform the classification. In a real-
life setting, we would create a multi-task system
jointly extracting the caption, detecting entities and
classifying them; the three tasks complementing
each other.

7 Conclusion

In this work, we propose several systems to solve
the task of classifying entity roles in memes. We fo-
cus on comparing classification models – MLP, At-
tention and Seq2seq systems – on top of pre-trained
multimodal encoder: CLIP, VisualBERT and OFA.
Our best standalone system uses the CLIP encoder
with MLP classifier, but our best score is obtained
using ensembling of a large number of models. We
also compare several sampling strategies to deal
with the class imbalance issue, proposing dynamic
sampling methods that outperform the standard uni-
form (“macro”) sampling.

As a preliminary future work, more or less
straightforward processing can be performed on
the dataset, at the entity-level (using an entity
linker to resolve surface forms to entity identifiers,
e.g. merging entities "US" and "United States"
together); at the OCR-level (performing lexical
normalization (Samuel and Straka, 2021) to deal
with OCR errors and meme-specific syntax); and at
the image-level (removing the text from the image,
for a less noisy image embedding).

To improve the model, entity representation is
key. We wish to train global entity embedding,
shared across the whole dataset, and contextualised
entity embeddings, aligning the entity’s vector rep-
resentation in the image and in the OCR of the
meme (when there is an explicit mention of it).
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A Human Annotations

To assess the quality of the dataset and put our
results into perspective, we hand labeled part of
the datasets. The team of five annotators is com-
posed of researchers in Natural Language Process-
ing. One of them is American native and the other
4 are European. Two of them are in the 40-50s
age range and three of them are in the 20-30s.
The annotators were all given the same 100 sam-
ples to label. To have a better estimate of the
macro-F1, we sampled 25 memes for each gold
role. The annotator were given the class defini-
tions and were informed that the labels had a uni-
form distribution. The annotation script as well
as the answers of the annotators are available with
the remainder of our code at https://github.
com/smontariol/mmsrl_constraint.

We compute the macro-F1 score of each anno-
tator, resulting in an average score of 0.65. The
minimum score was 0.57 and the maximum 0.69.
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These scores show the difficulty of the task for a
human. For comparison, the best score during the
challenge was 0.58, still considerably lower than
the human best score.

To measure the inter-annotator agreement, we
compute the average pair-wise Cohen’s κ (Cohen,
1960). It is similar to measuring the percentage of
agreement, but taking into account the possibility
of the agreement between two annotators to occur
by chance for each annotated sample. The average
Cohen’s κ is 0.47, indicating a “moderate” agree-
ment according to Cohen (1960). However, it also
indicates that less than one third of the annotations
are reliable (McHugh, 2012).
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