time_mlp_tgtcls_2_cswdtx.py (940B)
1 from blocks.initialization import IsotropicGaussian, Constant 2 3 import data 4 from model.time_mlp_tgtcls import Model, Stream 5 6 7 n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory 8 9 # generate target classes as a Fibonacci sequence 10 tgtcls = [1, 2] 11 for i in range(22): 12 tgtcls.append(tgtcls[-1] + tgtcls[-2]) 13 14 dim_embeddings = [ 15 ('origin_call', data.origin_call_size, 10), 16 ('origin_stand', data.stands_size, 10), 17 ('week_of_year', 52, 10), 18 ('day_of_week', 7, 10), 19 ('qhour_of_day', 24 * 4, 10), 20 ('day_type', 3, 10), 21 ('taxi_id', 448, 10), 22 ] 23 24 dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) 25 dim_hidden = [500, 100] 26 dim_output = len(tgtcls) 27 28 embed_weights_init = IsotropicGaussian(0.001) 29 mlp_weights_init = IsotropicGaussian(0.01) 30 mlp_biases_init = Constant(0.001) 31 32 learning_rate = 0.0001 33 momentum = 0.99 34 batch_size = 32 35 36 max_splits = 100