taxi

Winning entry to the Kaggle taxi competition
git clone https://esimon.eu/repos/taxi.git
Log | Files | Refs | README

commit 5e216e8c5197568c39029793ebafc4df50215cae
parent e1e2ff095a14d93e99960330a666c4d9a8fdf0ac
Author: Alex Auvolat <alex.auvolat@ens.fr>
Date:   Sat, 25 Jul 2015 14:19:22 -0400

Add bidirectional_tgtcls_1_momentum

Diffstat:
Aconfig/bidirectional_tgtcls_1_momentum.py | 36++++++++++++++++++++++++++++++++++++
1 file changed, 36 insertions(+), 0 deletions(-)

diff --git a/config/bidirectional_tgtcls_1_momentum.py b/config/bidirectional_tgtcls_1_momentum.py @@ -0,0 +1,36 @@ +import os +import cPickle + +from blocks.algorithms import Momentum +from blocks.initialization import IsotropicGaussian, Constant + +import data +from model.bidirectional_tgtcls import Model, Stream + + +with open(os.path.join(data.path, 'arrival-clusters.pkl')) as f: tgtcls = cPickle.load(f) + +dim_embeddings = [ + ('origin_call', data.origin_call_train_size, 10), + ('origin_stand', data.stands_size, 10), + ('week_of_year', 52, 10), + ('day_of_week', 7, 10), + ('qhour_of_day', 24 * 4, 10), + ('taxi_id', data.taxi_id_size, 10), +] + +hidden_state_dim = 100 + +dim_hidden = [500, 500] + +embed_weights_init = IsotropicGaussian(0.01) +weights_init = IsotropicGaussian(0.1) +biases_init = Constant(0.01) + +batch_size = 100 +batch_sort_size = 20 + +max_splits = 100 + +step_rule= Momentum(learning_rate=0.01, momentum=0.9) +