taxi

Winning entry to the Kaggle taxi competition
git clone https://esimon.eu/repos/taxi.git
Log | Files | Refs | README

commit a6fdddce3f94913a0f8fadfcf8c74005e76c192e
parent 7dab7e47ce0e8c5ae996821794450a9ad3186cd3
Author: Étienne Simon <esimon@esimon.eu>
Date:   Fri, 24 Jul 2015 16:10:55 -0400

Remove old memory network config files

Diffstat:
Dconfig/memory_network_1.py | 44--------------------------------------------
Dconfig/memory_network_2.py | 56--------------------------------------------------------
Dconfig/memory_network_3.py | 56--------------------------------------------------------
3 files changed, 0 insertions(+), 156 deletions(-)

diff --git a/config/memory_network_1.py b/config/memory_network_1.py @@ -1,44 +0,0 @@ -from blocks.initialization import IsotropicGaussian, Constant - -import data -from model.memory_network import Model, Stream - - -n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory - -dim_embeddings = [ - ('origin_call', data.origin_call_train_size, 10), - ('origin_stand', data.stands_size, 10), - ('week_of_year', 52, 10), - ('day_of_week', 7, 10), - ('qhour_of_day', 24 * 4, 10), - ('day_type', 3, 10), -] - - -class MLPConfig(object): - __slots__ = ('dim_input', 'dim_hidden', 'dim_output', 'weights_init', 'biases_init') - -prefix_encoder = MLPConfig() -prefix_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) -prefix_encoder.dim_hidden = [100, 100, 100] -prefix_encoder.weights_init = IsotropicGaussian(0.01) -prefix_encoder.biases_init = Constant(0.001) - -candidate_encoder = MLPConfig() -candidate_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) -candidate_encoder.dim_hidden = [100, 100, 100] -candidate_encoder.weights_init = IsotropicGaussian(0.01) -candidate_encoder.biases_init = Constant(0.001) - -normalize_representation = True - -embed_weights_init = IsotropicGaussian(0.001) - -batch_size = 32 - -max_splits = 1 -num_cuts = 1000 - -train_candidate_size = 1000 -valid_candidate_size = 10000 diff --git a/config/memory_network_2.py b/config/memory_network_2.py @@ -1,56 +0,0 @@ -from blocks import roles -from blocks.bricks import Rectifier, Tanh, Logistic -from blocks.filter import VariableFilter -from blocks.initialization import IsotropicGaussian, Constant - -import data -from model.memory_network import Model, Stream - - -n_begin_end_pts = 10 # how many points we consider at the beginning and end of the known trajectory - -dim_embeddings = [ - ('origin_call', data.origin_call_train_size, 10), - ('origin_stand', data.stands_size, 10), - ('week_of_year', 52, 10), - ('day_of_week', 7, 10), - ('qhour_of_day', 24 * 4, 10), - ('day_type', 3, 10), -] - - -class MLPConfig(object): - __slots__ = ('dim_input', 'dim_hidden', 'dim_output', 'weights_init', 'biases_init') - -prefix_encoder = MLPConfig() -prefix_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) -prefix_encoder.dim_hidden = [1000, 1000] -prefix_encoder.weights_init = IsotropicGaussian(0.01) -prefix_encoder.biases_init = Constant(0.001) - -candidate_encoder = MLPConfig() -candidate_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) -candidate_encoder.dim_hidden = [1000, 1000] -candidate_encoder.weights_init = IsotropicGaussian(0.01) -candidate_encoder.biases_init = Constant(0.001) - -representation_size = 1000 -representation_activation = Tanh -normalize_representation = True - -embed_weights_init = IsotropicGaussian(0.001) - -dropout = 0.5 -dropout_inputs = VariableFilter(bricks=[Rectifier], name='output') - -noise = 0.01 -noise_inputs = VariableFilter(roles=[roles.PARAMETER]) - -batch_size = 512 - -max_splits = 1 -num_cuts = 1000 - -train_candidate_size = 10000 -valid_candidate_size = 20000 - diff --git a/config/memory_network_3.py b/config/memory_network_3.py @@ -1,56 +0,0 @@ -from blocks import roles -from blocks.bricks import Rectifier, Tanh, Logistic -from blocks.filter import VariableFilter -from blocks.initialization import IsotropicGaussian, Constant - -import data -from model.memory_network import Model, Stream - - -n_begin_end_pts = 10 # how many points we consider at the beginning and end of the known trajectory - -dim_embeddings = [ - ('origin_call', data.origin_call_train_size, 10), - ('origin_stand', data.stands_size, 10), - ('week_of_year', 52, 10), - ('day_of_week', 7, 10), - ('qhour_of_day', 24 * 4, 10), - ('day_type', 3, 10), -] - - -class MLPConfig(object): - __slots__ = ('dim_input', 'dim_hidden', 'dim_output', 'weights_init', 'biases_init') - -prefix_encoder = MLPConfig() -prefix_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) -prefix_encoder.dim_hidden = [200, 200, 200] -prefix_encoder.weights_init = IsotropicGaussian(0.01) -prefix_encoder.biases_init = Constant(0.001) - -candidate_encoder = MLPConfig() -candidate_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) -candidate_encoder.dim_hidden = [200, 200, 200] -candidate_encoder.weights_init = IsotropicGaussian(0.01) -candidate_encoder.biases_init = Constant(0.001) - -representation_size = 500 -representation_activation = Tanh -normalize_representation = True - -embed_weights_init = IsotropicGaussian(0.001) - -dropout = 0.5 -dropout_inputs = VariableFilter(bricks=[Rectifier], name='output') - -noise = 0.01 -noise_inputs = VariableFilter(roles=[roles.PARAMETER]) - -batch_size = 512 - -max_splits = 1 -num_cuts = 1000 - -train_candidate_size = 10000 -valid_candidate_size = 20000 -