taxi

Winning entry to the Kaggle taxi competition
git clone https://esimon.eu/repos/taxi.git
Log | Files | Refs | README

commit b956078f7be28ea9dc763479a572f9e2efbeabaa
parent c78ba4616292cfd5a6202c942fd0680475a0c543
Author: Alex Auvolat <alex.auvolat@ens.fr>
Date:   Thu, 21 May 2015 10:53:55 -0400

Merge branch 'alex' into new

Conflicts:
	model/joint_simple_mlp_tgtcls.py
	train.py

Diffstat:
Aconfig/joint_simple_mlp_tgtcls_111_cswdtx_bigger.py | 56++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aconfig/joint_simple_mlp_tgtcls_111_cswdtx_bigger_dropout.py | 59+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aconfig/joint_simple_mlp_tgtcls_1_cswdtx_bigger.py | 55+++++++++++++++++++++++++++++++++++++++++++++++++++++++
Mtrain.py | 1+
4 files changed, 171 insertions(+), 0 deletions(-)

diff --git a/config/joint_simple_mlp_tgtcls_111_cswdtx_bigger.py b/config/joint_simple_mlp_tgtcls_111_cswdtx_bigger.py @@ -0,0 +1,56 @@ +import cPickle + +import model.joint_simple_mlp_tgtcls as model + +from blocks.initialization import IsotropicGaussian, Constant + +import data + +n_begin_end_pts = 10 # how many points we consider at the beginning and end of the known trajectory +n_end_pts = 10 + +n_valid = 1000 + +with open("%s/arrival-clusters.pkl" % data.path) as f: + dest_tgtcls = cPickle.load(f) + +# generate target classes for time prediction as a Fibonacci sequence +time_tgtcls = [1, 2] +for i in range(21): + time_tgtcls.append(time_tgtcls[-1] + time_tgtcls[-2]) + +dim_embeddings = [ + ('origin_call', data.origin_call_size+1, 15), + ('origin_stand', data.stands_size+1, 10), + ('week_of_year', 52, 10), + ('day_of_week', 7, 10), + ('qhour_of_day', 24 * 4, 10), + ('day_type', 3, 10), + ('taxi_id', 448, 10), +] + +# Common network part +dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) +dim_hidden = [1000] + +# Destination prediction part +dim_hidden_dest = [400] +dim_output_dest = dest_tgtcls.shape[0] + +# Time prediction part +dim_hidden_time = [400] +dim_output_time = len(time_tgtcls) + +# Cost ratio between distance cost and time cost +time_cost_factor = 4 + +embed_weights_init = IsotropicGaussian(0.01) +mlp_weights_init = IsotropicGaussian(0.1) +mlp_biases_init = Constant(0.01) + +learning_rate = 0.000001 +momentum = 0.99 +batch_size = 200 + +valid_set = 'cuts/test_times_0' + diff --git a/config/joint_simple_mlp_tgtcls_111_cswdtx_bigger_dropout.py b/config/joint_simple_mlp_tgtcls_111_cswdtx_bigger_dropout.py @@ -0,0 +1,59 @@ +import cPickle + +import model.joint_simple_mlp_tgtcls as model + +from blocks.initialization import IsotropicGaussian, Constant + +import data + +n_begin_end_pts = 10 # how many points we consider at the beginning and end of the known trajectory +n_end_pts = 10 + +n_valid = 1000 + +with open("%s/arrival-clusters.pkl" % data.path) as f: + dest_tgtcls = cPickle.load(f) + +# generate target classes for time prediction as a Fibonacci sequence +time_tgtcls = [1, 2] +for i in range(21): + time_tgtcls.append(time_tgtcls[-1] + time_tgtcls[-2]) + +dim_embeddings = [ + ('origin_call', data.origin_call_size+1, 15), + ('origin_stand', data.stands_size+1, 10), + ('week_of_year', 52, 10), + ('day_of_week', 7, 10), + ('qhour_of_day', 24 * 4, 10), + ('day_type', 3, 10), + ('taxi_id', 448, 10), +] + +# Common network part +dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) +dim_hidden = [5000] + +# Destination prediction part +dim_hidden_dest = [1000] +dim_output_dest = dest_tgtcls.shape[0] + +# Time prediction part +dim_hidden_time = [500] +dim_output_time = len(time_tgtcls) + +# Cost ratio between distance cost and time cost +time_cost_factor = 4 + +embed_weights_init = IsotropicGaussian(0.01) +mlp_weights_init = IsotropicGaussian(0.1) +mlp_biases_init = Constant(0.01) + +# apply_dropout = True +# dropout_p = 0.5 + +learning_rate = 0.001 +momentum = 0.9 +batch_size = 200 + +valid_set = 'cuts/test_times_0' + diff --git a/config/joint_simple_mlp_tgtcls_1_cswdtx_bigger.py b/config/joint_simple_mlp_tgtcls_1_cswdtx_bigger.py @@ -0,0 +1,55 @@ +import cPickle + +import model.joint_simple_mlp_tgtcls as model + +from blocks.initialization import IsotropicGaussian, Constant + +import data + +n_begin_end_pts = 7 # how many points we consider at the beginning and end of the known trajectory +n_end_pts = 7 + +n_valid = 1000 + +with open("%s/arrival-clusters.pkl" % data.path) as f: + dest_tgtcls = cPickle.load(f) + +# generate target classes for time prediction as a Fibonacci sequence +time_tgtcls = [1, 2] +for i in range(21): + time_tgtcls.append(time_tgtcls[-1] + time_tgtcls[-2]) + +dim_embeddings = [ + ('origin_call', data.origin_call_size+1, 15), + ('origin_stand', data.stands_size+1, 10), + ('week_of_year', 52, 10), + ('day_of_week', 7, 10), + ('qhour_of_day', 24 * 4, 10), + ('day_type', 3, 10), + ('taxi_id', 448, 10), +] + +# Common network part +dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) +dim_hidden = [5000] + +# Destination prediction part +dim_hidden_dest = [] +dim_output_dest = dest_tgtcls.shape[0] + +# Time prediction part +dim_hidden_time = [] +dim_output_time = len(time_tgtcls) + +# Cost ratio between distance cost and time cost +time_cost_factor = 4 + +embed_weights_init = IsotropicGaussian(0.01) +mlp_weights_init = IsotropicGaussian(0.1) +mlp_biases_init = Constant(0.01) + +learning_rate = 0.0001 +momentum = 0.99 +batch_size = 200 + +valid_set = 'cuts/test_times_0' diff --git a/train.py b/train.py @@ -68,6 +68,7 @@ if __name__ == "__main__": step_rule=CompositeRule([ RemoveNotFinite(), AdaDelta(), + #Momentum(learning_rate=config.learning_rate, momentum=config.momentum), ]), params=params)