taxi

Winning entry to the Kaggle taxi competition
git clone https://esimon.eu/repos/taxi.git
Log | Files | Refs | README

commit c912ef9424be973b11b4c7b7dbb2d32a8f3a9ab9
parent 80d3ea67a845484d119cb88f0a0412f981ab344c
Author: Alex Auvolat <alex.auvolat@ens.fr>
Date:   Mon,  4 May 2015 16:58:17 -0400

Restructure model & config

Diffstat:
Dconfig/model_0.py | 17-----------------
Aconfig/simple_mlp_0.py | 19+++++++++++++++++++
Dmodel.py | 196-------------------------------------------------------------------------------
Amodel/__init__.py | 0
Amodel/simple_mlp.py | 69+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Atrain.py | 139+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6 files changed, 227 insertions(+), 213 deletions(-)

diff --git a/config/model_0.py b/config/model_0.py @@ -1,17 +0,0 @@ -n_dow = 7 # number of division for dayofweek/dayofmonth/hourofday -n_dom = 31 -n_hour = 24 - -n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory -n_end_pts = 5 - -n_valid = 1000 - -dim_embed = 10 -dim_input = n_begin_end_pts * 2 * 2 + dim_embed + dim_embed -dim_hidden = [200, 100] -dim_output = 2 - -learning_rate = 0.0001 -momentum = 0.99 -batch_size = 32 diff --git a/config/simple_mlp_0.py b/config/simple_mlp_0.py @@ -0,0 +1,19 @@ +import model.simple_mlp as model + +n_dow = 7 # number of division for dayofweek/dayofmonth/hourofday +n_dom = 31 +n_hour = 24 + +n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory +n_end_pts = 5 + +n_valid = 1000 + +dim_embed = 10 +dim_input = n_begin_end_pts * 2 * 2 + dim_embed + dim_embed +dim_hidden = [200, 100] +dim_output = 2 + +learning_rate = 0.0001 +momentum = 0.99 +batch_size = 32 diff --git a/model.py b/model.py @@ -1,196 +0,0 @@ -import logging -import os -import sys -import importlib -from argparse import ArgumentParser - -import csv - -import numpy - -import theano -from theano import printing -from theano import tensor -from theano.ifelse import ifelse - -from blocks.filter import VariableFilter - -from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity -from blocks.bricks.lookup import LookupTable - -from blocks.initialization import IsotropicGaussian, Constant -from blocks.model import Model - -from fuel.datasets.hdf5 import H5PYDataset -from fuel.transformers import Batch -from fuel.streams import DataStream -from fuel.schemes import ConstantScheme, SequentialExampleScheme - -from blocks.algorithms import GradientDescent, Scale, AdaDelta, Momentum -from blocks.graph import ComputationGraph -from blocks.main_loop import MainLoop -from blocks.extensions import Printing, FinishAfter -from blocks.extensions.saveload import Dump, LoadFromDump, Checkpoint -from blocks.extensions.monitoring import DataStreamMonitoring - -import data -import transformers -import hdist -import apply_model - -if __name__ == "__main__": - if len(sys.argv) != 2: - print >> sys.stderr, 'Usage: %s config' % sys.argv[0] - sys.exit(1) - config = importlib.import_module(sys.argv[1]) - - -def setup_train_stream(): - # Load the training and test data - train = H5PYDataset(data.H5DATA_PATH, - which_set='train', - subset=slice(0, data.dataset_size), - load_in_memory=True) - train = DataStream(train, iteration_scheme=SequentialExampleScheme(data.dataset_size - config.n_valid)) - train = transformers.filter_out_trips(data.valid_trips, train) - train = transformers.TaxiGenerateSplits(train, max_splits=100) - train = transformers.add_first_k(config.n_begin_end_pts, train) - train = transformers.add_last_k(config.n_begin_end_pts, train) - train = transformers.Select(train, ('origin_stand', 'origin_call', 'first_k_latitude', - 'last_k_latitude', 'first_k_longitude', 'last_k_longitude', - 'destination_latitude', 'destination_longitude')) - train_stream = Batch(train, iteration_scheme=ConstantScheme(config.batch_size)) - - return train_stream - -def setup_valid_stream(): - valid = DataStream(data.valid_data) - valid = transformers.add_first_k(config.n_begin_end_pts, valid) - valid = transformers.add_last_k(config.n_begin_end_pts, valid) - valid = transformers.Select(valid, ('origin_stand', 'origin_call', 'first_k_latitude', - 'last_k_latitude', 'first_k_longitude', 'last_k_longitude', - 'destination_latitude', 'destination_longitude')) - valid_stream = Batch(valid, iteration_scheme=ConstantScheme(1000)) - - return valid_stream - -def setup_test_stream(): - test = data.test_data - - test = DataStream(test) - test = transformers.add_first_k(config.n_begin_end_pts, test) - test = transformers.add_last_k(config.n_begin_end_pts, test) - test = transformers.Select(test, ('trip_id', 'origin_stand', 'origin_call', 'first_k_latitude', - 'last_k_latitude', 'first_k_longitude', 'last_k_longitude')) - test_stream = Batch(test, iteration_scheme=ConstantScheme(1000)) - - return test_stream - - -def main(): - # The input and the targets - x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.porto_center[0]) / data.data_std[0] - x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.porto_center[1]) / data.data_std[1] - - x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.porto_center[0]) / data.data_std[0] - x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.porto_center[1]) / data.data_std[1] - - x_client = tensor.lvector('origin_call') - x_stand = tensor.lvector('origin_stand') - - y = tensor.concatenate((tensor.vector('destination_latitude')[:, None], - tensor.vector('destination_longitude')[:, None]), axis=1) - - # x_firstk_latitude = theano.printing.Print("x_firstk_latitude")(x_firstk_latitude) - # x_firstk_longitude = theano.printing.Print("x_firstk_longitude")(x_firstk_longitude) - # x_lastk_latitude = theano.printing.Print("x_lastk_latitude")(x_lastk_latitude) - # x_lastk_longitude = theano.printing.Print("x_lastk_longitude")(x_lastk_longitude) - - # Define the model - client_embed_table = LookupTable(length=data.n_train_clients+1, dim=config.dim_embed, name='client_lookup') - stand_embed_table = LookupTable(length=data.n_stands+1, dim=config.dim_embed, name='stand_lookup') - mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()], - dims=[config.dim_input] + config.dim_hidden + [config.dim_output]) - - # Create the Theano variables - client_embed = client_embed_table.apply(x_client) - stand_embed = stand_embed_table.apply(x_stand) - inputs = tensor.concatenate([x_firstk_latitude, x_firstk_longitude, - x_lastk_latitude, x_lastk_longitude, - client_embed, stand_embed], - axis=1) - # inputs = theano.printing.Print("inputs")(inputs) - outputs = mlp.apply(inputs) - - # Normalize & Center - # outputs = theano.printing.Print("normal_outputs")(outputs) - outputs = data.data_std * outputs + data.porto_center - - # outputs = theano.printing.Print("outputs")(outputs) - # y = theano.printing.Print("y")(y) - - outputs.name = 'outputs' - - # Calculate the cost - cost = (outputs - y).norm(2, axis=1).mean() - cost.name = 'cost' - hcost = hdist.hdist(outputs, y).mean() - hcost.name = 'hcost' - - # Initialization - client_embed_table.weights_init = IsotropicGaussian(0.001) - stand_embed_table.weights_init = IsotropicGaussian(0.001) - mlp.weights_init = IsotropicGaussian(0.01) - mlp.biases_init = Constant(0.001) - - client_embed_table.initialize() - stand_embed_table.initialize() - mlp.initialize() - - train_stream = setup_train_stream() - valid_stream = setup_valid_stream() - - # Training - cg = ComputationGraph(cost) - params = cg.parameters # VariableFilter(bricks=[Linear])(cg.parameters) - algorithm = GradientDescent( - cost=cost, - # step_rule=AdaDelta(decay_rate=0.5), - step_rule=Momentum(learning_rate=config.learning_rate, momentum=config.momentum), - params=params) - - extensions=[DataStreamMonitoring([cost, hcost], valid_stream, - prefix='valid', - every_n_batches=1000), - Printing(every_n_batches=1000), - # Checkpoint('model.pkl', every_n_batches=100), - Dump('taxi_model', every_n_batches=1000), - LoadFromDump('taxi_model'), - FinishAfter(after_epoch=5) - ] - - main_loop = MainLoop( - model=Model([cost]), - data_stream=train_stream, - algorithm=algorithm, - extensions=extensions) - main_loop.run() - main_loop.profile.report() - - # Produce an output on the test data - test_stream = setup_test_stream() - - outfile = open("test-output.csv", "w") - outcsv = csv.writer(outfile) - outcsv.writerow(["TRIP_ID", "LATITUDE", "LONGITUDE"]) - for out in apply_model.Apply(outputs=outputs, stream=test_stream, return_vars=['trip_id', 'outputs']): - dest = out['outputs'] - for i, trip in enumerate(out['trip_id']): - outcsv.writerow([trip, repr(dest[i, 0]), repr(dest[i, 1])]) - outfile.close() - - -if __name__ == "__main__": - logging.basicConfig(level=logging.INFO) - main() - diff --git a/model/__init__.py b/model/__init__.py diff --git a/model/simple_mlp.py b/model/simple_mlp.py @@ -0,0 +1,69 @@ +from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity +from blocks.bricks.lookup import LookupTable + +from blocks.initialization import IsotropicGaussian, Constant + +from theano import tensor + +import data +import hdist + +class Model(object): + def __init__(self, config): + # The input and the targets + x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.porto_center[0]) / data.data_std[0] + x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.porto_center[1]) / data.data_std[1] + + x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.porto_center[0]) / data.data_std[0] + x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.porto_center[1]) / data.data_std[1] + + x_client = tensor.lvector('origin_call') + x_stand = tensor.lvector('origin_stand') + + y = tensor.concatenate((tensor.vector('destination_latitude')[:, None], + tensor.vector('destination_longitude')[:, None]), axis=1) + + # Define the model + client_embed_table = LookupTable(length=data.n_train_clients+1, dim=config.dim_embed, name='client_lookup') + stand_embed_table = LookupTable(length=data.n_stands+1, dim=config.dim_embed, name='stand_lookup') + mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()], + dims=[config.dim_input] + config.dim_hidden + [config.dim_output]) + + # Create the Theano variables + client_embed = client_embed_table.apply(x_client) + stand_embed = stand_embed_table.apply(x_stand) + inputs = tensor.concatenate([x_firstk_latitude, x_firstk_longitude, + x_lastk_latitude, x_lastk_longitude, + client_embed, stand_embed], + axis=1) + # inputs = theano.printing.Print("inputs")(inputs) + outputs = mlp.apply(inputs) + + # Normalize & Center + # outputs = theano.printing.Print("normal_outputs")(outputs) + outputs = data.data_std * outputs + data.porto_center + + # outputs = theano.printing.Print("outputs")(outputs) + # y = theano.printing.Print("y")(y) + + outputs.name = 'outputs' + + # Calculate the cost + cost = hdist.erdist(outputs, y).mean() + cost.name = 'cost' + hcost = hdist.hdist(outputs, y).mean() + hcost.name = 'hcost' + + # Initialization + client_embed_table.weights_init = IsotropicGaussian(0.001) + stand_embed_table.weights_init = IsotropicGaussian(0.001) + mlp.weights_init = IsotropicGaussian(0.01) + mlp.biases_init = Constant(0.001) + + client_embed_table.initialize() + stand_embed_table.initialize() + mlp.initialize() + + self.cost = cost + self.hcost = hcost + self.outputs = outputs diff --git a/train.py b/train.py @@ -0,0 +1,139 @@ +import logging +import os +import sys +import importlib +from argparse import ArgumentParser + +import csv + +import numpy + +import theano +from theano import printing +from theano import tensor +from theano.ifelse import ifelse + +from blocks.filter import VariableFilter + +from blocks.model import Model + +from fuel.datasets.hdf5 import H5PYDataset +from fuel.transformers import Batch +from fuel.streams import DataStream +from fuel.schemes import ConstantScheme, SequentialExampleScheme + +from blocks.algorithms import GradientDescent, Scale, AdaDelta, Momentum +from blocks.graph import ComputationGraph +from blocks.main_loop import MainLoop +from blocks.extensions import Printing, FinishAfter +from blocks.extensions.saveload import Dump, LoadFromDump, Checkpoint +from blocks.extensions.monitoring import DataStreamMonitoring + +import data +import transformers +import hdist +import apply_model + +if __name__ == "__main__": + if len(sys.argv) != 2: + print >> sys.stderr, 'Usage: %s config' % sys.argv[0] + sys.exit(1) + config = importlib.import_module(sys.argv[1]) + + +def setup_train_stream(): + # Load the training and test data + train = H5PYDataset(data.H5DATA_PATH, + which_set='train', + subset=slice(0, data.dataset_size), + load_in_memory=True) + train = DataStream(train, iteration_scheme=SequentialExampleScheme(data.dataset_size - config.n_valid)) + train = transformers.filter_out_trips(data.valid_trips, train) + train = transformers.TaxiGenerateSplits(train, max_splits=100) + train = transformers.add_first_k(config.n_begin_end_pts, train) + train = transformers.add_last_k(config.n_begin_end_pts, train) + train = transformers.Select(train, ('origin_stand', 'origin_call', 'first_k_latitude', + 'last_k_latitude', 'first_k_longitude', 'last_k_longitude', + 'destination_latitude', 'destination_longitude')) + train_stream = Batch(train, iteration_scheme=ConstantScheme(config.batch_size)) + + return train_stream + +def setup_valid_stream(): + valid = DataStream(data.valid_data) + valid = transformers.add_first_k(config.n_begin_end_pts, valid) + valid = transformers.add_last_k(config.n_begin_end_pts, valid) + valid = transformers.Select(valid, ('origin_stand', 'origin_call', 'first_k_latitude', + 'last_k_latitude', 'first_k_longitude', 'last_k_longitude', + 'destination_latitude', 'destination_longitude')) + valid_stream = Batch(valid, iteration_scheme=ConstantScheme(1000)) + + return valid_stream + +def setup_test_stream(): + test = data.test_data + + test = DataStream(test) + test = transformers.add_first_k(config.n_begin_end_pts, test) + test = transformers.add_last_k(config.n_begin_end_pts, test) + test = transformers.Select(test, ('trip_id', 'origin_stand', 'origin_call', 'first_k_latitude', + 'last_k_latitude', 'first_k_longitude', 'last_k_longitude')) + test_stream = Batch(test, iteration_scheme=ConstantScheme(1000)) + + return test_stream + + +def main(): + model = config.model.Model(config) + + cost = model.cost + hcost = model.hcost + outputs = model.outputs + + train_stream = setup_train_stream() + valid_stream = setup_valid_stream() + + # Training + cg = ComputationGraph(cost) + params = cg.parameters # VariableFilter(bricks=[Linear])(cg.parameters) + algorithm = GradientDescent( + cost=cost, + # step_rule=AdaDelta(decay_rate=0.5), + step_rule=Momentum(learning_rate=config.learning_rate, momentum=config.momentum), + params=params) + + extensions=[DataStreamMonitoring([cost, hcost], valid_stream, + prefix='valid', + every_n_batches=1000), + Printing(every_n_batches=1000), + # Checkpoint('model.pkl', every_n_batches=100), + Dump('taxi_model', every_n_batches=1000), + LoadFromDump('taxi_model'), + FinishAfter(after_epoch=5) + ] + + main_loop = MainLoop( + model=Model([cost]), + data_stream=train_stream, + algorithm=algorithm, + extensions=extensions) + main_loop.run() + main_loop.profile.report() + + # Produce an output on the test data + test_stream = setup_test_stream() + + outfile = open("test-output.csv", "w") + outcsv = csv.writer(outfile) + outcsv.writerow(["TRIP_ID", "LATITUDE", "LONGITUDE"]) + for out in apply_model.Apply(outputs=outputs, stream=test_stream, return_vars=['trip_id', 'outputs']): + dest = out['outputs'] + for i, trip in enumerate(out['trip_id']): + outcsv.writerow([trip, repr(dest[i, 0]), repr(dest[i, 1])]) + outfile.close() + + +if __name__ == "__main__": + logging.basicConfig(level=logging.INFO) + main() +